- 1. Find the point of intersection of the plane 3x y + 7z + 8 = 0 and the line x = 4 + 5t, y = -2 + t, z = 4 t. Find also the angle between the line and the plane.
- 2. The position vectors of points P and Q referred to an origin O are given by $\mathbf{OP} = 3\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{OQ} = 5\mathbf{i} 4\mathbf{j} + 3\mathbf{k}$ respectively. Show that the cosine of $\angle POQ$ is equal to $\frac{4}{\sqrt{38}}$. Hence, or otherwise, find the position vector of M on OQ such that PM is perpendicular to OQ.
- 3. Given two lines $l_1: x = 1 + 2t$, y = -2 + 3t, z = 2 + 2t

$$l_2: \frac{1-x}{2} = \frac{y-2}{3} = z - 1$$

Determine whether these lines are parallel, intersect or skewed.

- **4.** $\pi_1: 2x y + z + 5 = 0$, $\pi_2: 4x + y + z 7 = 0$ are two planes.
 - O is the origin and the point P has coordinates (4,5,2).
 - (a) Verify that the vector $\mathbf{r} = -\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ is parallel to both π_1 and π_2 .
 - (b) Find the vector equation of the plane which passes through P and is perpendicular to both π_1 and π_2 .
 - (c) Find the coordinates of one point common to π_1 and π_2 and hence, find the Cartesian equation of the line of intersection of π_1 and π_2 .
- 5. The points A, B, C and D have positive vectors, relative to the origin O, given by

OA = i + aj - k, OB = -i + 2j + 3k, OC = 2i + j + 4k and OD = i + j + k, where a is a constant. Given OA is perpendicular to OB,

- (a) find the value of a and **OA**,
- (b) show that **OA** is normal to the plane OBC,
- (c) find an equation of the plane through D parallel to the plane OBC and, hence, find the position vector of the point of intersection of this plane and the line AC.

- 6. Let the equations of two planes be π_1 : $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = 2$ and π_2 : $\mathbf{r} \cdot \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} = 3$.
 - (a) Find the acute angle between π_1 and π_2 , giving your answer to the nearest 0.1°.
 - (b) Determine the length of the projection of the vector $\, {\bf i} + 3 {\bf j} \,$ to $\, \pi_1 \,$.
 - (c) Find the equation of the plane π_3 which is perpendicular to both π_1 and π_2 and passes though the point P(1,3,-2).
- A(1,4,2), B(3, -1,5), C(2,6,0), D(4,3, -1)E(3,7,3) and F(4,5,2) are six points in three dimensional space. The points A, B and C lie on the plane π₁, whereas the points D, E and F lie on the plane π₂. A straight line L₁ passes through the points E and F.
 - (a) Determine whether \overrightarrow{AB} and \overrightarrow{AC} are perpendicular vectors.
 - **(b)** Find the Cartesian equation of the plane π_1 .
 - (c) Find the equation of line L_1 in vector form and in parametric form.
 - (d) Find the coordinates of the point of intersection of the line L_1 and the plane π_1 .
 - (e) Find the Cartesian equation of the straight line L_2 passes through the point (10,8,9) and perpendicular to the plane π_1 .
 - (f) Find the position vector of the point of intersection between the lines L_1 and L_2 .
 - (g) Find the acute angle between the plane π_1 and the plane π_2 .